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Abstract

Given a graph G = (V,E), the Maximum Independent Set problem (MIS)
aims to determine a subset S ⊆ V of maximum cardinality such that no
two vertices of S are adjacent. This paper presents a general Swap-Based
Tabu Search (SBTS) for solving the MIS. SBTS integrates distinguished
features including a general and unified (k, 1)-swap operator, four constrained
neighborhoods and specific rules for neighborhood exploration. Extensive
evaluations on two popular benchmarks (DIMACS and BHOSLIB) of 120
instances show that SBTS attains the best-known results for all the instances.
To our knowledge, such a performance was not reported in the literature for
a single heuristic. The best-known results on 11 additional instances from
code theory are also attained.

Keywords : Maximum independent set; Maximum clique; Multiple neigh-
borhoods; Local search; Tabu search.

1. Introduction

Given a simple undirected graphG = (V,E) with vertex set V = {v1, . . . , vn}
and edge set E ⊂ V ×V . An independent set S is a subset of V such that no
two vertices are adjacent, i.e., ∀vi, vj ∈ S, {vi, vj} 6∈ E. An independent set
is said maximum if it has the largest cardinality among all the independent
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sets of G. The maximum independent set problem (MIS) is to determine a
maximum independent set of an arbitrary graph. As one of Karp’s 21 NP-
complete problems (Karp, 1972), MIS is among the most popular problems
in combinatorial optimization (Garey and Johnson, 1979; Johnson and Trick,
1996).

In graph theory, there are two tightly related problems: the maximum
clique problem (MC) and minimum vertex cover problem (MVC). A clique
C of G is a subset of V such that all vertices in C are pairwise adjacent, i.e.,
∀vi, vj ∈ C, {vi, vj} ∈ E. MC is to find a clique C of maximum cardinality.
A vertex cover V C of G is a subset of V such that each edge of E is incident
to at least one vertex of V C, i.e., ∀{vi, vj} ∈ E, vi ∈ V C ∨ vj ∈ V C. MVC
is to determine a vertex cover of minimum cardinality.

Let Ḡ = (V, Ē) be the complementary graph of G = (V,E) such that
Ē ⊂ V × V and ∀vi, vj ∈ V, {vi, vj} ∈ Ē if and only if {vi, vj} 6∈ E. Then
given a subset S of V , the following three statements are equivalent (Wu and
Hao, 2014): S is an independent set in G, V \S is a vertex cover in G and S

is a clique in Ḡ. As a consequence, MIS, MC and MVC are three equivalent
problems such that any algorithm designed for one of these problems can
be directly applied to solve the other two problems. These problems are
relevant to a wide variety of applications such as code theory, information
retrieval, signal transmission, classification theory, experimental design and
many more others (Bomze et al., 1999; Johnson and Trick, 1996; Wu and
Hao, 2014). In this work, we focus on studying the MIS problem.

During the past decades, a large number of solution procedures for solving
MIS, MC and MVC have been reported in the literature. Among them are
several exact algorithms based on the general branch-and-bound framework
(Carraghan and Pardalos, 1990; Li and Quan, 2010; Österg̊ard, 2002; Segundo
et al., 2011; Tomita and Kameda, 2007). These exact methods are applica-
ble to problem instances of limited sizes. For larger cases, various heuristics
have been proposed to obtain near-optimal solutions. The most representa-
tive heuristics include tabu search (Battiti and Protasi, 2001; Friden et al.,
1989; Wu et al., 2012; Wu and Hao, 2013), stochastic local search (Andrade
et al., 2012; Grosso et al., 2008; Katayama et al., 2005; Pullan, 2006, 2008),
parallel hyper-heuristics mixing several low-level heuristics (Pullan et al.,
2011), simulated annealing (Geng et al., 2007), variable neighborhood search
(Hansen et al., 2004), breakout local search (Benlic and Hao, 2013), local
search with edge weighting (Cai et al., 2013; Richter et al., 2007) and evo-
lutionary algorithms (Brunato and Battiti, 2011; Zhang et al., 2005). Ac-
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cording to the reported results on benchmark instances, in particular those
of the well-known Second DIMACS Implementation Challenge on Cliques,
Coloring, and Satisfiability (Johnson and Trick, 1996), it seems that ILS and
GLP (Andrade et al., 2012), BLS (Benlic and Hao, 2013), NuMVC (Cai et al.,
2013), PLS (Pullan, 2006, 2008), CLS (Pullan et al., 2011), COVER (Richter
et al., 2007), MN/TS (Wu et al., 2012) and AMTS (Wu and Hao, 2013) are
among the top performing heuristics in the literature. Nevertheless, due to
the large variety of structures of these instances (they are random graphs or
transformed from different real problems), no single approach can attain the
best-known results for all the DIMACS instances.

In this work, we introduce a general Swap-Based Tabu Search (SBTS)
heuristic for the maximum independent set problem. SBTS inspects the
search space by a dynamic alternation between intensification and diversifi-
cation steps (Glover and Laguna, 1997; Lourenço et al., 2003; Schrimpf et al.,
2007). The search process is driven by a general and unified (k, 1)-swap
(k ≥ 0) operator combined with specific rules to explore four constrained
neighborhoods. Given an independent set S, (k, 1)-swap exchanges one ver-
tex (which is strategically selected) in V \S against its k adjacent vertices in
S. For the purpose of intensification, SBTS uses (0,1)-swap to improve the
solution and (1,1)-swap to make side-walks with the help of specific selection
rules. To overcome local optima, SBTS adopts an adaptive perturbation
strategy which applies either a (2,1)-swap for a weak perturbation or a (k,1)-
swap (k > 2) for a strong perturbation. A tabu mechanism is also employed
to prevent the search from short-term cycles. Compared with existing local
search algorithms, SBTS distinguishes itself by its unified (k, 1)-swap op-
erator, its specific neighborhoods and its dedicated rules for neighborhood
exploration.

The proposed SBTS algorithm attains the best-known results for all 120
instances of the well-known DIMACS and BHOSLIB benchmarks with very
different structures and topologies. This is the first time a single heuristic
reaches such a performance. The best-known results are also attained on an
additional set of 11 real instances from code theory.

The rest of the paper is structured as follows. Section 2 describes the
SBTS approach. Section 3 shows computational results and comparisons
with the state-of-the-art algorithms in the literature. Before concluding,
Section 4 investigates and analyzes some important issue of the proposed
algorithm.
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2. A swap-based tabu search for MIS

Our Swap-Based Tabu Search (SBTS) algorithm for MIS follows the it-
erated local search framework (Lourenço et al., 2003) and shares similarities
with other methods like variable neighborhood search (Hansen et al., 2004)
and the ruin-and-recreate search (Schrimpf et al., 2007). However, as we
explain in this section, SBTS possesses some particular features like four
constrained neighborhoods and the specific rules for an effective exploration
of these neighborhoods.

2.1. General procedure

The general SBTS procedure is summarized in Algorithm 1. SBTS uses a
fast randomized construction procedure (Section 2.3) to obtain a first feasible
independent set S (i.e., no two vertices of S are adjacent, S is also called a

feasible solution or simply a solution in the paper). From this initial solution,
SBTS tries to find improved solutions (i.e., larger independent sets) by a
series of intensification and diversification steps (Sections 2.7 and 2.8). Both
intensification and diversification steps are based on the general (k, 1)-swap
operator (Section 2.5).

Specifically, each intensification step makes a (k, 1)-swap move (k = 0, 1)
to increase the cardinality of the independent set or search new solutions
while keeping the cardinality unchanged. Inversely, a diversification step
applies a (k, 1)-swap move (k ≥ 2) to decrease temporarily the quality of
the current solution (the current solution loses k − 1 vertices). Whenever
there exist intensification moves, they are always preferred over diversification
moves. Diversification moves are only applied to escape from a local optimum
(i.e., when no eligible (k, 1)-swap move (k = 0, 1) is available). As we explain
in Sections 2.7 and 2.8, both intensification and diversification are subject to
dedicated rules which govern the way (k, 1)-swap moves are executed.

SBTS uses a global variable S∗ to record the best solution ever discovered
during the search and a tabu list to prevent short-term cycles (see Section
2.6). The algorithm stops when a fixed number of iterations are realized.

2.2. Search space and evaluation function

Before presenting the components of the SBTS algorithm, we define first
the search space Ω explored by the algorithm as well as its evaluation function
f to measure the quality of a candidate solution.
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Algorithm 1 General procedure of the SBTS algorithm for MIS
1: Input: A graph G, Itersmax (maximum allowed iterations per run)
2: Output: The largest independent set S∗ found.
3: S ← Initialization() /* Generate a feasible independent set S, Sect. 2.3 */
4: S∗ ← S /* S∗ records the largest independent set found so far */
5: f∗ ← f(S) /* f∗ records the cardinality of S∗ */
6: Initialize tabu list /* Initialize the tabu list, Sect. 2.6 */
7: for iters← 1 to Itersmax do

8: if there exists an eligible intensification move then

9: S ← IntensificationStep(S) /* Apply (k, 1)-swap (k ≤ 1) to improve solution
S, Sect. 2.7 */

10: if f(S) > f∗ then

11: S∗ ← S, f∗ ← f(S)
12: end if

13: else

14: S ← DiversificationStep(S) /* Apply (k, 1)-swap (k > 1) to perturb solution
S, Sect. 2.8 */

15: end if

16: Update tabu list /* Sect. 2.6 */
17: end for

18: return S∗

For a given graph G = (V,E), the search space Ω explored by SBTS is the
set of all the independent sets ofG, i.e., Ω = {S ⊆ V : vi, vj ∈ S, {vi, vj} 6∈ E}.
For any feasible solution S ∈ Ω, its quality is directly assessed by the car-
dinality of S, i.e., f(S) = |S|. Given two independent sets S and S ′, S is
better than S ′ if and only if f(S) > f(S ′).

2.3. Initial solution

The initial solution used by the SBTS algorithm is generated by the
following sequential randomized heuristic (V is the vertex set of graph G).

1. Set S to empty

2. Select randomly a vertex u ∈ V and add u into S

3. Remove from V vertex u and all its adjacent vertices v ∈ V ({u, v} ∈ E)

4. Repeat steps (2)-(3) until V becomes empty and return S

It is easy to observe that the resulting solution S is a feasible (and maxi-
mal) independent set. Due to the random choices at step (2), each run of this
construction procedure may lead to a different solution. Given the stochastic
nature of SBTS, this feature is useful for multiple runs of SBTS.
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Figure 1: An illustrative example of graph G

2.4. Preliminary definitions

To explain the intensification and diversification mechanisms of SBTS,
we introduce some key concepts (measures) which are particularly useful to
define the different neighborhoods and the application rules of the general
(k, 1)-swap operator.

Definition 1. (Mapping Degree KM) Given a graph G = (V,E) and an
independent set S, the Mapping Degree of a vertex vi in V \S is the number
of its adjacent vertices vj in S, i.e., ∀vi ∈ V \S, KM(vi) = |{vj ∈ S : {vi, vj} ∈
E}|. A similar definition of Mapping Degree can be found in (Andrade et al.,
2012).

Fig. 1 shows a graph G with 10 vertices and an independent set S =
{1, 4, 6, 8} and V \S = {2, 3, 5, 7, 9, 10}. According to the definition, vertex 2
in V \S has one adjacent vertex (1) in S, hence the Mapping DegreeKM(2) =
1. Similarly, the Mapping Degrees of the other vertices in V \S are shown in
Table 1. The Mapping Degree is used to partition the vertices of V \S into
four subsets which define the neighborhoods used by SBTS (see Section 2.5).

Definition 2. (Expanding Degree KE) The Expanding Degree of a ver-
tex vi in S is the number of its adjacent vertices vj in V \S whose Map-
ping Degree KM equals to 1, i.e., ∀vi ∈ S,KE = |{vj ∈ V \S : {vi, vj} ∈
E,KM(vj) = 1}|.
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In Fig. 1, among the 4 vertices of S, only vertices 1 and 4 have adjacent
neighbors in V \S with a Mapping Degree of 1, thus their Expanding Degree
is KE(1) = 1 and KE(4) = 2 while vertices 6 and 8 have zero Expanding
Degree (see Table 1). The Expanding Degree is used to define the rule to
exploit the neighborhood induced by (1,1)-swap (see Section 2.7).

Definition 3. (Diversifying Degree KD) Given a graph G = (V,E) and
an independent set S, the Diversifying Degree of a vertex vi in V \S is the
number of adjacent vertices vj in V \S, i.e. ∀vi ∈ V \S,KD(vi) = |{vj ∈
V \S : {vi, vj} ∈ E}|.

The Diversifying Degree is used to differentiate vertices with the same Ex-
panding Degrees when the neighborhood induced by (1,1)-swap is exploited
(see Section 2.7). It is also employed to define the rule to select degrading,
i.e., (k, 1)-swap (k > 1) moves to escape from local optima (see Section 2.8).

For the details of our example shown in Fig. 1, see Table 1. As shown in
the Appendix, these measures will be dynamically updated after each itera-
tion of the algorithm and this can be achieved efficiently in an incremental
way.

Table 1: Mapping Degree, Expanding Degree and Diversifying Degree on the illustrative
graph.

Vertex in |V \S| Neighbors in S Mapping Degree
KM

Neighbors in V \S Diversifying
Degree KD

2 1 1 5 1
3 4 1 7, 10 2
5 4 1 2, 9, 10 3
7 1, 6, 8 3 3, 9 2
9 0 5, 7, 10 3
10 1, 8 2 3, 5, 9 3

Vertex in |S| Neighbors in V \S whose Mapping Degree KM = 1 Expanding Degree KE

1 2 1
4 3, 5 2

2.5. (k, 1)-swap, neighborhoods and exploration of neighborhoods

The search process of the SBTS algorithm is basically driven by the gen-
eral (k, 1)-swap (k = 0, 1, 2, . . .) operator. In this section, we provide a
detailed presentation of this operator, the different neighborhoods induced
by the operator and the way these neighborhoods are explored.

Let S be an independent set and V \S its complementary set. Let “S ⊕
(k, 1)-swap” denote the application of (k, 1)-swap (k ≥ 0) to S. Then the
resulting solution S ′ is given by S ′ ← S ⊕ (k, 1)-swap.
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According to the value of k, (k, 1)-swap changes differently the cardinal-
ity of the current solution S. The resulting solution has a larger or equal
cardinality when k ≤ 1 (i.e., k = 0, 1). Otherwise (i.e., k ≥ 2), the resulting
solution is deteriorated by k−1 units. Moreover, whatever the value k takes,
applying a (k, 1)-swap move to an independent set always leads to a feasible
solution.

To define the rules to apply this general (k, 1)-swap operator, we introduce
four different neighborhoods. Precisely, given an independent set S (the
current solution), we partition its complementary set V \S into four subsets
according to the Mapping Degree of each vertex (see Section 2.4).

1. NSk: the set of vertices vi in V \S whose Mapping Degree KM equals
to k, i.e., NSk = {vi ∈ V \S : KM(vi) = k}, (k = 0, 1, 2).

2. NS>2: the set of vertices vi in V \S whose Mapping Degree KM is
larger than 2, i.e., NS>2 = {vi ∈ V \S : KM(vi) > 2}.

For the example of Fig. 1 where S = {1, 4, 6, 8} and V \S = {2, 3, 5, 7, 9, 10},
we have NS0 = {9}, NS1 = {2, 3, 5}, NS2 = {10} and NS>2 = {7}.

Clearly, each NSk (k = 0, 1, 2, > 2) set defines unambiguously a different
(and constrained) neighborhood when it is employed by the (k, 1)-swap op-
erator. Precisely, for a given NSk, the associated neighborhood is composed
of all the solutions obtained by swapping a vertex of NSk with its k adjacent
vertices in S. For this reason, we will also use NSk (k = 0, 1, 2, > 2) to
denote the associated neighborhoods interchangeably.

To explore the search space, the SBTS algorithm selects at each iteration
a particular vertex from one NSk (k = 0, 1, 2, > 2) as follows. SBTS first
examines NS0 to see whether an improving (0,1)-swap move is applicable.
If NS0 is not empty, a (0,1)-swap move is applied with a vertex randomly
chosen from NS0. Otherwise, if NS1 offers eligible vertices, a side-walk
(1,1)-swap move is applied to a vertex of NS1 which is selected according
to the specific rule presented in Section 2.7. If NS1 is empty or all the
vertices of NS1 are forbidden by the tabu list, SBTS makes a degrading
(k, 1)-swap move with a vertex from NS2 or NS>2 following the rule defined
in Section 2.8. Hence, at each iteration, SBTS only checks a smaller number
(i.e., |NSk| instead of |V \S|) of neighboring solutions to explore the search
space. According to the value of k, each iteration corresponds to either an
intensification step (k = 0, 1) or a diversification step (k ≥ 2). After each
iteration, KM , KE, KD, along with the neighborhoods NSk and their sizes
are updated accordingly (see the Appendix).
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One understands intuitively that during the search process, NS0 will be
exhausted very rapidly. Among the remaining NSk (k = 1, 2, > 2) sets,
NSk with k ≥ 2 can only deteriorate the solution and should not be used
frequently. The only set that could lead to a hopeful improvement of the
solution is NS1. In Section 2.7 and 2.8, we introduce dedicated rules for the
exploration of the neighborhoods NSk with k ≥ 1.

2.6. Tabu list and aspiration rule

The SBTS algorithm uses a tabu list to avoid short-term cycles (Glover
and Laguna, 1997). Precisely, each time a (k, 1)-swap move is executed, the
k vertices which are swapped out from the independent set S are classified
tabu in order to prevent these vertices from moving back to S for the next
tt iterations (tt is called tabu tenure). On the other hand, the vertex which
joins S is not subject to tabu prohibition. Thus the tabu list is updated only
after a (k, 1)-swap with k ≥ 1.

Suppose (k, 1)-swap exchanges vertex vi ∈ NSk (k ≥ 1) and its k adjacent
vertices (vj1 , vj2 ...vjk) in S. For each vertex vjp (p = 1...k), its tabu tenure tt
is adaptively set as follows.

• k = 1: If |NS1| < |NS2| + |NS>2|, tt = 10 + Random(|NS1|) where
Random(A) returns a random value from the domain {0...A−1}; Oth-
erwise, tt = |NS1|.

• k > 1: tt is set to 7.

These tabu tenure rules are purely empirical. However, for the case of k =
1, the first part corresponds to situations which occur usually and the adopted
tabu tenure (tt = 10+Random(|NS1|)) is inspired from the literature (Dorne
and Hao, 1998; Galinier and Hao, 1999; Wu and Hao, 2013). The second part
(which occurs occasionally) is based on the consideration that when there are
many side-walk moves (i.e., |NS1| is very high relative to |NS2| and |NS>2|),
the vertex that just left the solution will not be considered before having
tried a number of side-walk moves as high as |NS1|. For the case of k > 1,
since there are several vertices (at least two) leaving the independent set and
these k vertices are not chosen according to specific objectives, there is no
reason to prevent them from joining the solutions for a long period of time.
For this reason, the tabu tenure for them can be set to a relatively small
value. In fact, we observe that as long as the tabu tenure remains in the
range of 4 to 10, it does not really impact the performance of the algorithm.
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So we set the tabu tenure to the middle value 7 which proves to be robust
in our experiments. In Section 4.2, we provide more information about the
tabu tenure.

Notice that vertices in NS0 are never forbidden by the tabu list given
that any vertex in NS0 can increase the current solution by one unit. This
can be considered as an aspiration condition (Glover and Laguna, 1997) that
revokes the tabu status of any vertex if it belongs to NS0.

Finally, given an independent set S and the associated sets NSk (k =
1, 2, > 2), a vertex from any NSk is said eligible if it is not forbidden by the
tabu list.

2.7. Intensification

Intensification of the SBTS algorithm aims to find better solutions or to
reach new solutions without deteriorating the current solution. For this pur-
pose, whenever NS0 is not empty, SBTS applies (0, 1)-swap to improve the
solution. For instance, in Fig. 1, given the current solution S = {1, 4, 6, 8},
NS0 = {9} and NS1 = {2, 3, 5}, SBTS will select vertex 9 to apply (0, 1)-
swap to generate a better solution S = {1, 4, 6, 8, 9}. When NS0 becomes
empty, SBTS checks then the NS1 neighborhood for a possible (1,1)-swap
(side-walk) move.

If NS1 offers multiple choices for a (1,1)-swap, one must decide which ver-
tex of NS1 is selected for the (1,1)-swap. One trivial strategy is to make this
decision at random. However, as we illustrate below, the order of examining
the vertices in NS1 for (1,1)-swap may impact the solution quality. To make
this decision as fruitful as possible, we devise a selection rule which takes into
account problem specific information relative to the Expanding Degree and
Diversifying Degree (see Section 2.4). The proposed selection rule favors the
(1,1)-swap moves that tend to create new promising (e.g., improving) moves
for future iterations.

Selection Rule for the NS1 neighborhood examination:

1. Collect in set NS−
1 any vertex vi ∈ NS1 such that its adjacent neighbor

vj in S has the largest Expanding Degree;

2. If NS−
1 is composed of a single vertex, select this vertex; otherwise,

select the vertex vi ∈ NS−
1 with the largest Diversifying Degree (ties

are broken at random).

The first part of this Selection Rule is based on the following considera-
tion. When swapping vi ∈ NS1 with vj ∈ S such that vj has the largest Ex-
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panding Degree, we encourage the emergence of improving (0,1)-swap moves.
For instance, in Fig. 1, given NS1 = {2, 3, 5} and suppose that all the ver-
tices in NS1 are eligible for a (1,1)-swap move (the notion of eligibility under
the tabu rule is explained in Section 2.6). Since vertices 3 and 5 of NS1 have
the adjacent vertex 4 in S with an Expanding Degree of 2 while vertex 2
of NS1 has the adjacent vertex 1 in S with an Expanding Degree of 1, we
have NS−

1 = {3, 5} (i.e., vertices 3 and 5 are preferred than vertex 2). At
this point, one notices a (1,1)-swap using any vertex 3 or 5 of NS−

1 (say 3)
will change the Mapping Degree of the other vertex (vertex 5) to 0. This
makes the other vertex to become a member of the updated NS0 and could
be added to the independent set at the next iteration. In comparison, since
vertex 2 ∈ NS1 has an Expanding Degree of 1, swapping 2 into S cannot
create any improving moves.

The second part of this Selection Rule is based on the consideration that
the vertices of NS1 with a larger Diversifying Degree could make the search
more diversified after a (1,1)-swap move. Indeed, after swapping vi ∈ NS1

and vj ∈ S, we need to update the Mapping Degree, the Expanding Degree
and Diversifying Degree concerned by vi and vj (see Appendix), leading to
modifications of the neighborhoods NSk (k = 0, 1, 2, > 2). By definition, a
vertex vi ∈ NS1 with a larger Diversifying Degree has more adjacent vertices
in V \S. Selecting such a vertex for a (1,1)-swap move leads to more changes
in V \S, thus more changes in the neighborhoods NSk (k = 0, 1, 2, > 2). In
this sense, this helps to diversify the choices of the next iteration of the search
procedure. For our example in Fig. 1, vertices 3 and 5 have respectively a
Diversifying Degree of 2 and 3. According to the Selection Rule, vertex 5
(instead of vertex 3) is selected to take part in the swap move with vertex
4 in S. After this move, three vertices (2, 9 and 10 which are adjacent to
5 in V \S) take part in neighborhood updating. In comparison, vertex 3
in NS1 (with a small Diversifying Degree) will induce fewer changes in the
neighborhoods.

One notices that this heuristic selection rule has no theoretical guarantee
of being able to always lead to the best choice. However, the rule is designed
to favor a good choice when such a choice is available. The computational
results shown in the paper confirm its usefulness in practice.

Further reducing NS1 neighborhood examination:

As explained above, among the vertices of NS1, those vi whose adjacent
neighbor vj in S has an Expanding Degree of 1 are less promising than the
other vertices since using these vi in (1,1)-swap can only lead to new side-
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walk (or degrading) moves and can never create new improving moves for
the next iteration. In order to prevent the search from making uselessly
too many side-walk moves, we define an additional rule to reduce NS1 as
follows. If there are more (1,1)-swap moves than (k, 1)-swap (k > 1) moves
(i.e., |NS1| > |NS2| + |NS>2|), we exclude from NS1 any vi such that its
adjacent neighbor vj has an Expanding Degree of 1. For instance, in Fig. 1,
NS1 = {2, 3, 5}. If we apply this reduction rule, vertex 2 will be excluded
from NS1 since the Expanding Degree of its neighbor in S (vertex 1) equals
to 1. Experiments show that this reduction rule could improve the search
efficiency for a number of situations where a large number of side-walk moves
frequently appear during the search process.

Algorithm 2 The Intensification Step for MIS
1: Input: A feasible independent set S
2: Output: The independent set S′.
3: /* Explore neighborhood NS0 with an improving (0,1)-swap move */
4: if NS0 is not empty then

5: Choose randomly a vertex vi from NS0;
6: S′ ← S ⊕ (0, 1)-swap;
7: else

8: /* Explore neighborhood NS1 with a side-walk (1,1)-swap move */
9: if |NS1| > |NS2|+ |NS>2| then
10: Exclude vertices vi from NS1 whose neighbor vj in S satisfies KE(vj) = 1;
11: end if

12: Determine a vertex vi from NS1 according to Selection Rule;
13: if vi is obtained then

14: S′ ← S ⊕ (1, 1)-swap;
15: else

16: S′ ← S;
17: end if

18: end if

19: Perform the updating procedure; /* see Appendix */
20: Return S′;

The pseudo-code of one intensification iteration is given in Algorithm 2
where S is the current independent set and NSk (k = 0, 1, 2, > 2) are the
associated neighborhoods.

Notice that after each (1, 1)-swap, the neighborhoods NSk are updated
accordingly (see Appendix). Additionally, the vertex that is swapped out
from S is added to the tabu list to prevent it from being moved back to S

for a number of next iterations (see Section 2.6).
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If NS0 is empty and NS1 does not offer any eligible (1,1)-swap move (i.e.,
NS1 is empty or all the vertices of NS1 are forbidden by the tabu list), the
search continues with a diversification step which is explained in the next
section.

2.8. Diversification

When the current solution cannot be further improved by a (0,1)-swap or
changed by a (1,1)-swap, the search procedure is trapped in a local optimum.
To escape from this local optimum, the SBTS algorithm resorts to (k, 1)-swap
(k ≥ 2) moves to perturb the current solution in order to displace the search
to a new search zone. These swap moves are carried out according to some
dedicated rules which once again depend on problem specific information.

One observes first that a (k, 1)-swap (k ≥ 2) move applied to a solution
S deteriorates the cardinality of S by exactly k − 1 units. Consequently,
a smaller k (e.g., k = 2) perturbs more weakly a solution while a larger k

(e.g., k > 2) changes more strongly the solution. To control the perturbation
strength, SBTS adopts an adaptive strategy according to a relation between
the number of possible (1, 1)-swap moves (i.e., |NS1|) and the number of of
(k, 1)-swap (k > 1) moves (i.e., |NS2| + |NS>2|). Precisely, the adaptive
perturbation strategy is defined as follows.

1. If |NS1| > |NS2| + |NS>2|, SBTS uses NS>2 to perform a strong
perturbation by a (k, 1)-swap (k > 2) move as follows: Select an eligible
vertex vi of NS>2 with the largest Diversifying Degree (ties are broken
at random) and swap the chosen vertex vi with its k neighbors in S.

2. Otherwise, SBTS applies with equal probability either NS2 or NS>2

to perform either a weak or strong perturbation.

- k = 2: Select an eligible vertex vi of NS2 with the largest Diver-
sifying Degree (ties are broken at random) and then swap vi with
its two neighbors in S.

- k > 2: Determine an eligible vi of NS>2 at random without con-
sidering the tabu list and then swap the chosen vertex vi with its
k neighbors in S.

The underlying rationale for point (1) is that when a local optimum is
reached, all the vertices of NS1 are prohibited by the tabu list (i.e., they
have been removed recently from the independent set S, see Section 2.6). A
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large NS1 indicates thus that in the recent past, the search has gone through
a high number of side-walk moves. This situation corresponds to a kind of
deep local optimum which is diffcult to escape. To displace the search into a
new search zone, we need to apply a strong perturbation which is achieved
by employing a (k, 1)-swap move with k > 2.

The second case corresponds to the situation where the search has made
a relative small number of side-walk moves. In this case, we alternate proba-
bilistically the perturbation strength to try to find better solutions in a zone
around the current local optimum (with a weak perturbation) or far from
current local optimum (with a strong perturbation).

Like for an intensification step, after a (k, 1)-swap (k ≥ 2), the neigh-
borhood sets NSk (k = 0, 1, 2, > 2) are updated accordingly (see Appendix).
The k vertices that are swapped out from S are added to the tabu list (Section
2.6).

3. Experimental results

3.1. Benchmark instances

To evaluate the efficiency of our proposed SBTS algorithm, we carry out
experiments on three different data sets: DIMACS, BHOSLIB and CODE.

• DIMACS benchmark: This set was established for the Second DI-
MACS Implementation Challenge (Johnson and Trick, 1996). It con-
tains 12 varieties of instances with multiple topologies and densities.
It is composed of 80 graphs with size ranging from less than 50 ver-
tices and 1,000 edges up to more than 4,000 vertices and 5,000,000
edges. These instances are the most popular and frequently used for
evaluating algorithms for MIS, MC and MVC. Among these 80 DI-
MACS instances, the maximum clique is now known for 74 of them
except 6 graphs: 3 (large) random graphs with at least 500 vertices
(C500.9, C1000.9, C2000.9) and 3 structured graphs (hamming10-4,
johnson32 2 4, keller6) (McCreesh and Prosser, 2013; Wu and Hao,
2014). These instances are available from http://www.cs.hbg.psu.

edu/txn131/clique.html.

• BHOSLIB benchmark: This set arose from the SAT’04 Compe-
tition. The BHOSLIB instances were translated from hard random
SAT instances (Xu et al., 2005). Each of the 40 instances has a
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known, but hidden optimal solution. These instances have a size of
ranging from less than 500 vertices and 100,000 edges up to more
than 1,500 vertices and 10,000,000 edges. The set is more and more
used in the literature for performance evaluation. These instances are
available from http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/

graph-benchmarks.htm.

• CODE benchmark: This set is composed of 11 large graphs arising
from code theory with size ranging from 1,024 vertices and 7,936 edges
up to 4,096 vertices and more than 184,320 edges. These instances have
unknown optima and are the least frequently used in the literature.
They are available from http://neilsloane.com/doc/graphs.html.

Since the original DIMACS graphs are proposed for MC, we use their
complement graphs to test our SBTS algorithm. For BHOSLIB and CODE
benchmarks, the original graphs are used.

3.2. Experimental protocol

Our SBTS algorithm is coded in C++1 and compiled using g++ with the
‘-O2’ option on a Cluster running Linux with 2.83GHz and 8GB. When we
run the DIMACS machine benchmark program2 on our machine, we obtain
the following results: 0.20 CPU seconds for graph r300.5, 1.23 CPU seconds
for r400.5 and 4.68 CPU seconds for r500.5.

Given its stochastic nature, we run SBTS independently 100 times to solve
each instance with initial solutions generated by the procedure of Section
2.3. The stop condition of each run is a maximum of 108 iterations which
are divided into 104 restarts, each restart being limited to 104 iterations (i.e.,
Itersmax = 104, Algorithm 1). This experimental protocol is typically used
in the literature (see next section). SBTS runs with the self-tuned tabu
tenure tt given in Section 2.6. Though fine-tuning tabu tenure would lead
to improved results for some graphs, for our experiments, we used the above
tabu tenure except as otherwise stated. No other parameter is required by
SBTS.

1The source code of our SBTS algorithm will be available at: http://www.info.

univ-angers.fr/pub/hao/mis.html.
2ftp://dimacs.rutgers.edu/pub/dsj/clique/
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3.3. Computational results of SBTS on DIMACS, BHOSLIB and CODE in-

stances

Tables 2, 3 and 4 show respectively the computational statistics of the
SBTS algorithm on the three sets of benchmark instances with respect to fbk
which designates the optimal value or the best lower bound (i.e., the largest
independent set ever reported in the literature). Notice that for the popular
DIMACS and BHOSLIB benchmarks, recent heuristics can attain the fbk
value for many cases, as it is shown in Table 5 of Section 3.4.

Table 2 shows the computational statistics of the SBTS algorithm on
the set of 80 DIMACS instances. Columns 1-4 give the characteristics of
each graph: the name, the number of vertices and edges, and the optimal
or best-known result fbk (optimal values are marked with ‘*’). The columns
under heading “SBTS” list our best result f∗, the average result favg, the
successful runs Success for reaching f∗ over the 100 independent runs, the
average iterations AvgIters and the average CPU time t(s) (seconds) over
the successful runs.

Table 2 demonstrates that SBTS obtains quite competitive results on
the set of DIMACS instances. Specifically, SBTS can consistently reach the
previous best-known solutions for 75 out of the 80 instances with a perfect
success rate. Furthermore, SBTS can reach the best-known results for all the
instances with various topologies and densities, including the most difficult
graphs (brock 800 x(x = 1, 2, 3, 4), C2000.9, MANN a45 and MANN a81).
To the best of our knowledge, the top-performing heuristics in the literature
miss at least one best-known result of these difficult graphs. On the other
hand, one observes that SBTS has a low success rate (less than 50%) for
3 graphs. Notice that for the 6 open instances (C500.9, C1000.9, C2000.9,
hamming10-4, johnson32 2 4, keller6), SBTS hits the best lower bounds for
each run except for C2000.9. One can speculate that these lower bounds
(except for C2000.9) would be close to or would be optimal solutions and thus
are difficult to improve, even though this observation does not constitute a
proof. As for the computing time, SBTS requires on average less than 1000
seconds except for C2000.9 and C4000.5.

Table 3 reports the computational results of SBTS on the set of 40
BHOSLIB instances. The column 1-4 gives the characteristic of the graphs
and column 5-9 presents the detailed results of the proposed SBTS algorithm.
From this table, one finds that SBTS also performs well for this benchmark
set. Specifically, SBTS reaches the optimal results with a perfect success rate
for the instances with up to 1000 vertices. The BHOSLIB set is known to be
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Table 2: Detailed computational results of SBTS on the set of 80 DIMACS instances.
Each instance is solved 100 times and each run is limited to a maximum of 108 iterations.

Characteristics of the graphs SBTS
Name |V | |E| fbk f∗ favg(Std.) Success AvgIters t(s)
brock200 1 200 14834 21* 21 21.00 100/100 329 0.0005
brock200 2 200 9876 12* 12 12.00 100/100 12859 0.0450
brock200 3 200 12048 15* 15 15.00 100/100 11606 0.0296
brock200 4 200 13089 17* 17 17.00 100/100 33277 0.0768
brock400 1 400 59723 27* 27 27.00 100/100 15572682 66.3977
brock400 2 400 59786 29* 29 29.00 100/100 4159016 20.2432
brock400 3 400 59681 31* 31 31.00 100/100 340265 1.7676
brock400 4 400 59765 33* 33 33.00 100/100 160679 0.8298
brock800 1 800 207505 23* 23 21.52(0.88) 26/100 56901393 963.6288
brock800 2 800 208166 24* 24 22.29(1.49) 43/100 46449467 784.3647
brock800 3 800 207333 25* 25 24.16(1.35) 72/100 40752010 651.0726
brock800 4 800 207643 26* 26 25.90(0.70) 98/100 25784326 421.6047
C125.9 125 6963 34* 34 34.00 100/100 85 0.0001
C250.9 250 27984 44* 44 44.00 100/100 492 0.0005
C500.9 500 112332 57 57 57.00 100/100 23184 0.0540
C1000.9 1000 450079 68 68 68.00 100/100 1438740 8.3696
C2000.5 2000 999836 16* 16 16.00 100/100 7628 0.9211
C2000.9 2000 1799532 80 80 77.29(0.64) 2/100 79591805 1515.5700
C4000.5 4000 4000268 18* 18 18.00 100/100 4289342 1553.2406
DSJC500.5 500 125248 13* 13 13.00 100/100 524 0.0074
DSJC1000.5 1000 499652 15* 15 15.00 100/100 26455 2.2891
keller4 171 9435 11* 11 11.00 100/100 27 0.0001
keller5 776 225990 27* 27 27.00 100/100 2101 0.0194
keller6 3361 4619898 59 59 59.00 100/100 12311511 754.8754
MANN a9 45 918 16* 16 16.00 100/100 3 0.0000
MANN a27 378 70551 126* 126 126.00 100/100 635 0.0008
MANN a45 1035 533115 345* 345 345.00 100/100 4763131 27.5632
MANN a81 3321 5506380 1100* 1100 1100.00 100/100 716340 22.6991
hamming6-2 64 1824 32* 32 32.00 100/100 18 0.0000
hamming6-4 64 704 4* 4 4.00 100/100 2 0.0000
hamming8-2 256 31616 128* 128 128.00 100/100 217 0.0001
hamming8-4 256 20864 16* 16 16.00 100/100 10 0.0000
hamming10-2 1024 518656 512* 512 512.00 100/100 365 0.0004
hamming10-4 1024 434176 40 40 40.00 100/100 255 0.0037
gen200-p0.9-44 200 17910 44* 44 44.00 100/100 947 0.0005
gen200-p0.9-55 200 17910 55* 55 55.00 100/100 576 0.0004
gen400-p0.9-55 400 71820 55* 55 55.00 100/100 1504 0.0027
gen400-p0.9-65 400 71820 65* 65 65.00 100/100 186 0.0006
gen400-p0.9-75 400 71820 75* 75 75.00 100/100 432 0.0010
c-fat200-1 200 1534 12* 12 12.00 100/100 34 0.0001
c-fat200-2 200 3235 24* 24 24.00 100/100 119 0.0009
c-fat200-5 200 8473 58* 58 58.00 100/100 89 0.0005
c-fat500-1 500 4459 14* 14 14.00 100/100 63 0.0013
c-fat500-2 500 9139 26* 26 26.00 100/100 76 0.0020
c-fat500-5 500 23191 64* 64 64.00 100/100 102 0.0031
c-fat500-10 500 46627 126* 126 126.00 100/100 157 0.0045
johnson8-2-4 28 210 4* 4 4.00 100/100 1 0.0000
johnson8-4-4 70 1855 14* 14 14.00 100/100 3 0.0000
johnson16-2-4 120 5460 8* 8 8.00 100/100 1 0.0000
johnson32-2-4 496 107880 16 16 16.00 100/100 1 0.0000
p hat300-1 300 10933 8* 8 8.00 100/100 35 0.0002
p hat300-2 300 21928 25* 25 25.00 100/100 22 0.0001
p hat300-3 300 33390 36* 36 36.00 100/100 32 0.0001
p hat500-1 500 31569 9* 9 9.00 100/100 105 0.0028
p hat500-2 500 62946 36* 36 36.00 100/100 157 0.0011
p hat500-3 500 93800 50* 50 50.00 100/100 607 0.0028
p hat700-1 700 60999 11* 11 11.00 100/100 1620 0.0476
p hat700-2 700 121728 44* 44 44.00 100/100 57 0.0014
p hat700-3 700 183010 62* 62 62.00 100/100 153 0.0021
p hat1000-1 1000 122253 10* 10 10.00 100/100 48 0.0069
p hat1000-2 1000 244799 46* 46 46.00 100/100 343 0.0150
p hat1000-3 1000 371746 68* 68 68.00 100/100 700 0.0127
p hat1500-1 1500 284923 12* 12 12.00 100/100 85232 13.0180
p hat1500-2 1500 568960 65* 65 65.00 100/100 365 0.0202
p hat1500-3 1500 847244 94* 94 94.00 100/100 683 0.0169
san200 0.7 1 200 13930 30* 30 30.00 100/100 6682 0.0139
san200 0.7 2 200 13930 18* 18 18.00 100/100 765 0.0015
san200 0.9 1 200 17910 70* 70 70.00 100/100 890 0.0008
san200 0.9 2 200 17910 60* 60 60.00 100/100 37 0.0001
san200 0.9 3 200 17910 44* 44 44.00 100/100 3192 0.0025
san400 0.5 1 400 39900 13* 13 13.00 100/100 2586 0.0248
san400 0.7 1 400 55860 40* 40 40.00 100/100 137032 0.8490
san400 0.7 2 400 55860 30* 30 30.00 100/100 11758 0.0691
san400 0.7 3 400 55860 22* 22 22.00 100/100 14543 0.0818
san400 0.9 1 400 71820 100* 100 100.00 100/100 3823 0.0075
san1000 1000 250500 15* 15 15.00 100/100 1410471 46.4781
sanr200 0.7 200 13868 18* 18 18.00 100/100 435 0.0008
sanr200 0.9 200 17863 42* 42 42.00 100/100 665 0.0004
sanr400 0.5 400 39984 13* 13 13.00 100/100 552 0.0041
sanr400 0.7 400 55869 21* 21 21.00 100/100 559 0.0026
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Table 3: Detailed computational results of SBTS on the set of 40 BHOSLIB instances.
Each instance is solved 100 times and each run is limited to a maximum of 108 iterations.

Characteristics of the graphs SBTS
Name |V | |E| fbk f∗ favg(Std.) Success AvgIters t(s)
frb30-15-1 450 83198 30* 30 30.00 100/100 8182 0.0264
frb30-15-2 450 83151 30* 30 30.00 100/100 15420 0.0562
frb30-15-3 450 83216 30* 30 30.00 100/100 14226 0.0498
frb30-15-4 450 83194 30* 30 30.00 100/100 15057 0.0564
frb30-15-5 450 83231 30* 30 30.00 100/100 44397 0.1611
frb35-17-1 595 148859 35* 35 35.00 100/100 171245 0.6895
frb35-17-2 595 148868 35* 35 35.00 100/100 96263 0.4014
frb35-17-3 595 148784 35* 35 35.00 100/100 26607 0.1027
frb35-17-4 595 148873 35* 35 35.00 100/100 232484 0.8445
frb35-17-5 595 148572 35* 35 35.00 100/100 61897 0.2411
frb40-19-1 760 247106 40* 40 40.00 100/100 46853 0.2384
frb40-19-2 760 247157 40* 40 40.00 100/100 4316200 20.6966
frb40-19-3 760 247325 40* 40 40.00 100/100 550507 2.7152
frb40-19-4 760 246815 40* 40 40.00 100/100 2187043 11.6519
frb40-19-5 760 246801 40* 40 40.00 100/100 9738592 55.9365
frb45-21-1 945 386854 45* 45 45.00 100/100 2800152 23.0019
frb45-21-2 945 387416 45* 45 45.00 100/100 6617043 53.1387
frb45-21-3 945 387795 45* 45 45.00 100/100 13044028 98.7293
frb45-21-4 945 387491 45* 45 45.00 100/100 5276955 42.9933
frb45-21-5 945 387461 45* 45 45.00 100/100 10366230 80.3013
frb50-23-1 1150 580603 50* 50 49.75(0.43) 75/100 37020418 368.6880
frb50-23-2 1150 579824 50* 50 49.49(0.50) 49/100 40728061 302.2116
frb50-23-3 1150 579607 50* 50 49.13(0.34) 13/100 62285352 517.4469
frb50-23-4 1150 580417 50* 50 50.00 100/100 10398673 94.6139
frb50-23-5 1150 580640 50* 50 50.00 100/100 17773506 119.3523
frb53-24-1 1272 714129 53* 53 52.03(0.17) 3/100 55616513 498.3600
frb53-24-2 1272 714067 53* 53 52.30(0.46) 30/100 34698236 321.4827
frb53-24-3 1272 714229 53* 53 52.66(0.47) 66/100 43238016 359.6429
frb53-24-4 1272 714048 53* 53 52.22(0.41) 22/100 42301012 340.4545
frb53-24-5 1272 714130 53* 53 52.91(0.29) 91/100 27705528 273.8870
frb56-25-1 1400 869624 56* 56 55.07(0.26) 7/100 54577332 551.6357
frb56-25-2 1400 869899 56* 56 55.06(0.31) 8/100 51319979 470.2750
frb56-25-3 1400 869921 56* 56 55.30(0.46) 30/100 41946192 383.5283
frb56-25-4 1400 869262 56* 56 55.86(0.35) 86/100 34350025 335.2178
frb56-25-5 1400 869699 56* 56 55.79(0.41) 79/100 38964414 568.9961
frb59-26-1 1534 1049256 59* 59 58.02(0.20) 2/100 25836232 261.1367
frb59-26-2 1534 1049648 59* 59 57.96(0.24) 1/100 78884128 762.2700
frb59-26-3 1534 1049729 59* 59 57.94(0.37) 4/100 42283734 388.9075
frb59-26-4 1534 1048800 59* 59 58.00(0.32) 5/100 74758342 969.9380
frb59-26-5 1534 1049829 59* 59 58.81(0.46) 84/100 40168986 394.9430

more difficult compared to most of the DIMACS benchmark. Yet, SBTS can
still attain the optimal results for all the 40 instances. On the other hand,
SBTS has a low or very low success rate (less than 50%) for 11 graphs and
requires a large computing time for the largest instances.

Table 4 reports the computational statistics of our SBTS algorithm on
the set of 11 CODE instances where the best-known results fbk are from
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Table 4: Detailed computational results of SBTS on the set of 11 CODE instances. Each
instance is solved 100 times and each run is limited to a maximum of 108 iterations.

Characteristics of the graphs SBTS
Name |V | |E| fbk f∗ favg(Std.) Success AvgIters t(s)
1dc.1024 1024 24063 94 94 94.00 100/100 10764 0.0289
1dc.2048 2048 58367 172 172 172.00 100/100 33895 0.1678
1et.1024 1024 9600 171 171 171.00 100/100 38018 0.0669
1et.2048 2048 22528 316 316 316.00 100/100 2016754 6.5911
1tc.1024 1024 7936 196 196 196.00 100/100 10798 0.0157
1tc.2048 2048 18944 352 352 352.00 100/100 1622215 6.5195
1zc.1024 1024 33280 112 112 111.99(0.01) 99/100 9984898 29.7898
1zc.2048 2048 78848 198 198 198.00 100/100 18931972 81.6927
1zc.4096 4096 184320 379 379 373.00(3.57) 1/100 96720177 1187.4100
2dc.1024 1024 169162 16 16 16.00 100/100 1371 0.0327
2dc.2048 2048 504451 24 24 24.00 100/100 154941 6.9823

(Andrade et al., 2012; Sloane , 2000). The results of SBTS are obtained with
the default tabu tenure tt except those of 1et.2048, 1tc2048 and 1zc.4096 for
which tt = 40 + Randdom(|NS1|). From the table, one finds that SBTS
attains the best-known results for all the CODE instances in a short time.
SBTS reaches the best-known results with a perfect success rate for 9 out of
11 instances. However, for one case (1zc.4096), its success rate is very low
(1%).

From the results on DIMACS, BHOSLIB and CODE benchmarks, one
observes that there is no clear correlation between the problem size and the
necessary time to solve it since the difficulty of an instance also depends on
its structure.

3.4. Comparisons with seven state-of-the-art algorithms

To assess the performance of the proposed SBTS algorithm relative to
the state-of-the-art methods, we compare in this section SBTS with some
best-performing algorithms for MIS, MC and MVC in the literature. We
present two comparisons which concern the DIMACS and BHOSLIB sets on
the one hand and the CODE set on the other hand.

3.4.1. Comparisons with five references algorithms on DIMACS and BHOSLIB

benchmarks

For this comparison, we focus on 45 most difficult instances from DIMACS
and BHOSLIB sets and ignore the other instances since they can be easily
solved with a 100% success rate by all the compared algorithms. First we
summarize below the experimental conditions used by 5 reference algorithms

19



which are implemented on sequential architectures and report state-of-the-art
computational results on both DIMACS and BHOSLIB benchmarks.

• MN/TS (Wu et al., 2012): This is a multi-neighborhood tabu search
algorithm which is designed for the equivalent maximum clique clique
(and its weighted generalization). It is run on a PC with 2.83 GHz
CPU and 8 GB RAM, and the stop condition is a maximum of 108

iterations.

• BLS (Benlic and Hao, 2013): This is an iterated local search algorithm
which combines a descent procedure with a dedicated and adaptive
perturbation strategy. BLS is run on a Xeon E5440 with 2.83 GHz and
2 GB, and the stop condition is a maximum of 1.6 ∗ 108 iterations.

• PLS (Pullan, 2006, 2008): This is a highly effective phased local search
algorithm which relies on three sub-algorithms using different vertex
selection rules. It is run on a Pentium IV machine with 512KB L2
cache and 512 MB RAM, and the stop condition is a maximum of 108

iterations for all instances except for MANN a45 and MANN a81 where
109 iterations are allowed.

• COVER (Richter et al., 2007): This is a local search algorithm de-
signed for the equivalent minimum vertex cover problem which uses
edge weighting techniques. It is run on a machine with 2.13 GHz and
2 GB RAM, and the stop condition is a maximum of 108 iterations.

• NuMVC (Cai et al., 2013): This is a very recent local search algorithm
for MVC using edge weighting techniques. It is run on a machine with
3 GHz CPU and 4 GB RAM, and the stop condition is a cutoff time
which is set to 2,000 seconds.

Table 5 summarizes the results of the competing algorithms. All the re-
sults are based on 100 independent runs for each graph. The reported results
of the reference algorithms are extracted from the corresponding papers while
the results of SBTS are from Tables 2 and 3.

For each compared algorithm, we show its best result f∗, followed by the
average result favg given in parenthesis over 100 runs if the success rate is
lower than 100%, and the average time in seconds t(s) over the successful
runs. For COVER, as stated in (Richter et al., 2007), t(s) is the median run
time which is indicative of a typical run of the algorithm.
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“Best #” in the last row of Table 5 shows the number of instances for
which an algorithm cannot reach the best-known results in the literature
and “Avg.” indicates the average value of favg for the 45 instances for each
algorithm. Note that, “-” in Table 5 means that the result is unavailable.

One observes from Table 5 that except SBTS, each reference algorithm
fails to find the best-known results for at least two instances (entries in
italic). Indeed, given that these instances have very different characteristics
and structures, it is known that it is very difficult for a single heuristic
to perform well on all the instances (Pullan et al., 2011). Besides, SBTS
has a slightly better average result of 74.21 against 74.18 of PLS which is
the best among the reference algorithms (except NuMVC whose average is
an optimistic upper bound since its results are missing for six instances).
When we examine the results of Table 5 in detail, we can make the following
observations.

For the DIMACS instances, MN/TS, BLS and PLS (which are maximum
clique or maximum independent set algorithms) reach the best reported re-
sults for the groups “brock”, “C”, “keller” with a high success rate except
for C2000.9 which is among the most difficult instance. For this instance,
MN/TS and BLS achieve the best-known result (80) with an average of 78.37
and 78.60 respectively while PLS fails to find solutions larger than 78. For
the group “MANN”, MN/TS, BLS and PLS cannot to reach the best-known
results of MANN a45 (345) and MANN a81 (1100). The largest solutions
they find have a size of 340, 342, 344 for MANN a45, and a size of 1090,
1094, 1098 for MANN a81 respectively. Generally, it seems that the typical
MC or MIS algorithms (e.g., MN/TS, BLS, PLS) have serious difficulties to
solve these two “MANN” instances.

By contrast, the typical MVC algorithms COVER and NuMVC perform
well on the group “MANN” with a high success rate while they clearly en-
counter difficulties for the group “brock”. Indeed, COVER fails to reach the
best-known result for 6 out of the 12 brock instances. For the 6 brock in-
stances tested by NuMVC, two results do not match the best-known values.
Besides, for C2000.9, NuMVC can achieve the best-known result of 80 while
COVER can only achieve a solution of size of 78.

Our SBTS algorithm achieves the best-known results for all 25 DIMACS
instances including the two ’problematic’ groups “brock” and “MANN”. In
particular, SBTS can attain the best results for MANN a45 and MANN a81
with a perfect success rate, which is better than the typical MC or MIS
algorithms.
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Table 5: Comparisons of SBTS with five reference algorithms on 45 most difficult DIMACS

and BHOSLIB instances. Each instance is solved 100 times and each run is limited to a

maximum of 108 iterations for PLS (Pullan, 2006, 2008), COVER (Richter et al., 2007),

MN/LS (Wu et al., 2012), 1.6 ∗ 108 iterations for BLS (Benlic and Hao, 2013) and 2,000

seconds for NuMVC (Cai et al., 2013).
Graph MN/TS BLS PLS COVER NuMVC SBTS

Name fbk f∗ t(s) f∗ t(s) f∗ t(s) f∗ t(s) f∗ t(s) f∗ t(s)

brock200 1 21* 21 0.01 21 0.01 21 0.00 21 0.01 - - 21 0.00

brock200 2 12* 12 0.06 12 0.18 12 0.03 12 0.43 12 0.13 12 0.05

brock200 3 15* 15 0.07 15 0.57 15 0.03 15 7.62 - - 15 0.03

brock200 4 17* 17 0.09 17 0.43 17 0.08 17 7.90 17 1.26 17 0.08

brock400 1 27* 27 10.27 27 121.40 27 1.08 25(25.00) - - - 27 66.40

brock400 2 29* 29 1.34 29 17.40 29 0.38 28(27.01) - 29(28.84) 572.39 29 20.24

brock400 3 31* 31 0.63 31 5.08 31 0.18 31(30.50) 135.26 - - 31 1.77

brock400 4 33* 33 0.28 33 3.17 33 0.10 33(32.70) 112.98 33 4.98 33 0.83

brock800 1 23* 23(22.72) 188.14 23(22.40) 1568.24 23 30.09 21(21.00) - - - 23(21.52) 963.63

brock800 2 24* 24(23.88) 156.47 24(23.04) 1078.13 24 24.41 22(22.00) - 21(21.00) - 24(22.29) 784.36

brock800 3 25* 25 118.57 25(24.52) 1020.11 25 15.08 23(23.00) - - - 25(24.16) 651.07

brock800 4 26* 26 62.38 26 601.74 26 6.54 24(24.00) - 21(21.00) - 26(25.90) 421.60

C125.9 34* 34 0.01 34 0.00 34 0.00 34 0.01 34 0.00 34 0.00

C250.9 44* 44 0.01 44 0.00 44 0.00 44 0.01 44 0.00 44 0.00

C500.9 57 57 0.06 57 0.00 57 0.19 57 0.31 57 0.13 57 0.05

C1000.9 68 68 0.63 68 35.70 68 1.88 68 5.82 68 2.02 68 8.37

C2000.5 16* 16 0.07 16 2.90 16 0.73 16 3.78 16 2.93 16 0.92

C2000.9 80 80(78.37) 563.70 80(78.60) 4811.17 78(78.00) - 78(77.84) - 80(78.71) 1393.30 80(77.29) 1515.57

C4000.5 18* 18 144.37 18 654.60 18 149.65 18 689.74 18 252.81 18 1553.24

keller4 11* 11 0.01 11 0.00 11 0.00 11 0.01 11 0.00 11 0.00

keller5 27* 27 0.05 27 0.09 27 0.05 27 0.07 27 0.04 27 0.02

keller6 59 59 97.87 59 24.80 59(57.75) 550.95 59 15.63 59 2.51 59 754.88

MANN a27 126* 126 3.42 126 35.20 126 0.03 126 0.01 126 0.00 126 0.00

MANN a45 345* 340(340.00)90.58 342(340.82)- 344(344.00)28.76 345(344.41)- 345 86.36 345 27.56

MANN a81 1100* 1090 632.24 1094 - 1098 269.66 1100 - 1100 732.90 1100 22.70

(1090.00) (1092.17) (1098.00) (1098.11) (1099.06)

frb50-23-1 50* 50(49.84) 116.92 50(49.96) 882.22 50(49.72) 1045.59 50(49.89) 171.92 50 38.14 50(49.75) 368.69

frb50-23-2 50* 50(49.47) 161.77 50(49.56) 1074.17 50(49.45) 1171.15 50(49.30) 1.72 50 176.59 50(49.49) 302.21

frb50-23-3 50* 50(49.15) 214.58 50(49.08) 1037.68 50(49.16) 1041.40 50(49.24) 2.61 50(49.95) 532.81 50(49.13) 517.45

frb50-23-4 50* 50 11.91 50 55.51 50 126.44 50 16.94 50 7.89 50 94.61

frb50-23-5 50* 50 50.90 50 142.93 50(49.99) 436.29 50(49.98) 88.94 50 19.53 50 119.35

frb53-24-1 53* 53(52.03) 240.36 53(52.04) 2306.74 53(52.06) 1707.39 53(52.09) 11.31 53(52.86) 715.12 53(52.03) 498.36

frb53-24-2 53* 53(52.30) 209.89 53(52.16) 2015.13 53(52.23) 1548.89 53(52.34) 4.24 53 205.35 53(52.30) 321.48

frb53-24-3 53* 53(52.91) 253.96 53(52.88) 1199.95 53(52.66) 1185.68 53(52.91) 157.80 53 51.23 53(52.66) 359.64

frb53-24-4 53* 53(52.45) 178.01 53(52.54) 1361.23 53(52.46) 1423.27 53(52.24) 10.74 53 266.87 53(52.22) 340.45

frb53-24-5 53* 53(52.90) 278.31 53(52.90) 1100.00 53(52.85) 979.85 53(52.84) 253.05 53 39.89 53(52.91) 273.89

frb56-25-1 56* 56(55.22) 174.02 56(55.20) 2304.83 56(55.10) 1240.19 56(55.15) 20.73 56 470.68 56(55.07) 551.64

frb56-25-2 56* 56(55.12) 127.16 56(55.06) 1500.44 56(54.93) 1702.39 56(55.12) 30.33 56(55.97) 617.49 56(55.06) 470.28

frb56-25-3 56* 56(55.25) 209.48 56(55.20) 1409.09 56(55.08) 1476.61 56(55.76) 435.30 56 121.30 56(55.30) 383.53

frb56-25-4 56* 56(55.85) 158.14 56(55.86) 999.51 56(55.66) 1304.03 56(55.84) 291.11 56 49.45 56(55.86) 335.22

frb56-25-5 56* 56 85.57 56 591.49 56(55.81) 1089.08 56(55.98) 89.58 56 26.76 56(55.79) 569.00

frb59-26-1 59* 59(58.05) 242.75 59(57.96) 3298.21 58(57.85) - 59(58.11) 30.76 59(58.88) 687.85 59(58.02) 261.14

frb59-26-2 59* 59(58.01) 396.38 59(58.00) 2399.92 58(57.63) - 59(58.06) 40.86 59(58.38) 1160.02 59(57.96) 762.27

frb59-26-3 59* 59(58.23) 197.36 59(58.31) 2338.59 59(57.77) 1929.05 59(58.12) 65.04 59(58.96) 580.03 59(57.94) 388.91

frb59-26-4 59* 59(58.10) 192.45 59(58.20) 1823.63 59(57.71) 2044.91 59(58.01) 73.92 59(58.79) 741.21 59(58.00) 969.94

frb59-26-5 59* 59(58.99) 96.09 59 403.30 59(58.77) 1193.22 59(58.89) 292.60 59 61.91 59(58.81) 394.94

Best #(Avg.) -2(74.02) -2(74.05) -5(74.18) -7(74.01) -(≥ 2)(≤ 74.36) 0(74.21)

The average results given in parenthesis show that MN/TS, BLS, PLS,
COVER and NuMVC can attain the reported best results in every single
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run for 20, 19, 21, 14 and 20 cases out of 25 DIMACS instances respectively,
while SBTS has a perfect success rate for 20 cases, which is more than BLS
and COVER, equal to MN/TS and NuMVC and one less than PLS. However,
for C2000.9, the average result of SBTS is slightly worse than the reference
algorithms.

For the BHOSLIB instances, the reference algorithms can attain the best-
known results except PLS which fails to reach the optimal solutions for frb59-
26-1 and frb59-26-2. One observes from the average results that MN/TS,
BLS, PLS, COVER and NuMVC can attain the optimal solutions in every
single run for 3, 4, 1, 1 and 13 cases respectively. Our SBTS algorithm is able
to reach the best-known results with a perfect success rate for 2 cases, which
is more than PLS and COVER but less than MN/TS, BLS and NuMVC.

Finally, it is more delicate to make a fully fair comparison of the comput-
ing time given that the compared algorithms are coded in different languages
with different data structures, run on different platforms and more impor-
tantly lead to results of different quality for a number of graphs. As an
indicative, we observe that to reach a result of equal quality, SBTS is more
time consuming than MN/TS, COVER and NuMVC, but remains competi-
tive with BLS and PLS.

3.4.2. Comparisons with two reference algorithms on CODE benchmark

The CODE benchmark is less popular than the DIMACS and BHOSLIB
sets and few papers report results on the 11 CODE instances including (An-
drade et al., 2012; Butenko et al., 2009; Etzion and Ostergard, 1998). How-
ever, we think the CODE instances are of interest since they come from real
problems (code theory) and known to be relatively difficult. For this study,
we adopt as our reference two most recent algorithms that use the CODE
benchmark: ILS and GLP (Andrade et al., 2012)3. Both ILS and GLP are
run on a computer equipped with a 3.16 GHz Intel Core 2 Duo CPU and 4
GB of RAM. Unlike the reference studies of the last section which make 100
independent runs, the results of ILS and GLP reported in (Andrade et al.,
2012) are based on 15 runs. The stop condition for each run is the average
arc (edge) scans limited to 217 (Andrade et al., 2012).

In addition to the 11 CODE instances, the authors of (Andrade et al.,

3The study of (Andrade et al., 2012) uses two other test sets (MESH and ROAD) that
includes very large sparse graphs. Unfortunately, these instances cannot be loaded into
our computer due to the matrix representation used by SBTS.
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Table 6: Comparisons of SBTS with two typical MIS algorithms ILS and GLP (Andrade
et al., 2012) on 32 representative instances. Each instance is solved 15 times and each run
is allowed to a maximum of 108 iterations for SBTS and average arc (edge) scans limited
to 217 for ILS and GLP.

Graph ILS GLP SBTS
Name fbk f∗ t(s) f∗ t(s) f∗ t(s)
brock400 1 27* 25(25.0) 11.00 27(25.1) 22.00 27 59.21
brock400 2 29* 25(25.0) 11.00 29(27.7) 20.00 29 25.39
brock400 3 31* 31(27.0) 11.00 31 19.00 31 1.01
brock400 4 33* 33(30.3) 11.00 33 16.00 33 0.86
brock800 1 23* 21(21.0) 60.00 23(21.1) 112.00 23(21.3) 1127.50
brock800 2 24* 21(21.0) 60.00 21(21.0) 111.00 24(22.0) 787.93
brock800 3 25* 22(22.0) 60.00 25(22.2) 111.00 25(24.4) 763.61
brock800 4 26* 26(21.3) 60.00 26(21.7) 112.00 26(25.7) 400.82
C2000.9 80 77(76.9) 103.00 79(77.5) 182.00 78(77.1) 1558.14
C4000.5 18* 18(17.1) 1897.00 18 3708.00 18 1553.24
MANN a45 345* 345(344.5) 3.00 344(343.8) 5.00 345 17.99
MANN a81 1100* 1100 10.00 1098(1097.6) 17.00 1100 22.29

frb30-15-1 30* 30 9.00 30 22.00 30 0.03
frb35-17-1 35* 35(34.9) 13.00 35 32.00 35 1.93
frb40-19-1 40* 40 19.00 40 43.00 40 0.87
frb45-21-1 45* 45(44.7) 27.00 45(44.9) 62.00 45 34.50
frb50-23-1 50* 50(48.9) 36.00 49(48.6) 82.00 50(49.7) 250.32
frb53-24-1 53* 53(51.5) 42.00 52(51.3) 93.00 52(52.0) 52.36
frb56-25-1 56* 55(54.2) 49.00 55(54.1) 111.00 55(55.0) 123.34
frb59-26-1 59* 58(57.3) 57.00 57(57.0) 126.00 59(58.0) 436.48
frb100-40 100* 96(95.3) 249.00 95(94.1) 495.00 96(95.4) 862.18

1dc.1024 94 94(93.1) 14.00 94(93.1) 31.00 94 0.00
1dc.2048 172 172(171.1) 32.00 172(171.5) 74.00 172 0.06
1et.1024 171 171 8.00 171(170.9) 16.00 171 0.16
1et.2048 316 316 16.00 316 40.00 316 4.13
1tc.1024 196 196 8.00 196 18.00 196 0.03
1tc.2048 352 352 15.00 352 37.00 352 19.10
1zc.1024 112 112(111.1) 10.00 112 28.00 112 43.44
1zc.2048 198 198(197.3) 22.00 198(197.8) 65.00 198 56.94
1zc.4096 379 379(367.7) 51.00 379(374.4) 160.00 379(372.6) 99.83
2dc.1024 16 16 50.00 16 198.00 16 0.01
2dc.2048 24 24(23.8) 165.00 24 527.00 24 3.07

2012) also report results on a subset of 33 DIMACS and 9 BHOSLIB in-
stances (8 instances as they are introduced in Section 3.1 plus one additional
challenging instance frb100-40). To make a fair comparison, we re-run SBTS
15 times (like ILS and GLP) on these 11 CODE instances and the 42 DI-
MACS/BHOSLIB instances. Since there is no evident way to relate the
number of average arc (edge) scans used by ILS and GLP to the number
of iterations used by SBTS, SBTS is run under the stop condition given in
Section 3.4. To report the results, we only retain the 12 (out of 33) most
difficult graphs for the DIMACS set while keeping the 11 CODE instances
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and the 9 BHOSLIB instances since for the remaining instances, all three
compared algorithms reach the same results.

Table 6 shows the comparison of ILS (columns 3-4), GLP (columns 5-6)
and SBTS (columns 7-8): the best result f∗, followed by the average results
favg given in parenthesis over 15 runs, and the average time in seconds t(s)
over the successful runs.

From Table 6, one observes that ILS and GLP cannot reach the best-
known results for 9 (entries in italic) out of 21 difficult DIMACS and BHOSLIB
instances while SBTS fails to reach the best-known result for 4 instances with
its 15 runs (corresponding to the cases where its success rate is lower than
15%, see Tables 2 and 3). Furthermore, the average results of SBTS on the
instances which cannot be solved with a 100% success rate are all better than
ILS and GLP except for C2000.9 where the average of SBTS (77.1) is worse
than GLP (77.5) but better than ILS (76.9). We do not emphasize the com-
puting time since the compared algorithms give several results of different
quality (f∗).

For the CODE set, the three compared algorithms can achieve the best-
known result for the 11 instances. Furthermore, ILS and GLP reach the best
results with a 100% success rate for 5 and 6 cases respectively against 10
cases for our SBTS algorithm (i.e., except 1zc.4096).

To conclude, the comparative results indicate that the proposed SBTS
algorithm is quite competitive with the reference algorithms not only for the
best obtained solutions but also for the average solutions. SBTS seems to
be the most comprehensive approach to solve the DIMACS, BHOSLIB and
CODE instances with multiple topologies and densities.

4. Analysis of SBTS

Now we turn our attention to an analysis of the important feature of the
proposed SBTS algorithm: the selection rule for intensification (Section 2.7)
and the analysis of tabu tenure (Section 2.6).

4.1. Influence of the Selection Rule for intensification

As described in Section 2.7, SBTS uses a Selection Rule for the NS1

neighborhood for (1,1)-swap moves. In this section, we carry out an exper-
iment to verify the importance of this dedicated Selection Rule compared
to a random selection rule. For this purpose, we create a variant of SBTS

25



Table 7: Comparisons of SBTSrandom with SBTS
Graph SBTSrandom SBTS

Name fbk f∗(favg) t(s) f∗(favg) t(s)
brock400 1 27* 27 118.95 27 66.40
brock400 2 29* 29 18.81 29 20.24
brock400 3 31* 31 4.63 31 1.77
brock400 4 33* 33 0.81 33 0.83
brock800 1 23* 23(21.40) 874.88 23(21.52) 963.63
brock800 2 24* 24(22.29) 823.12 24(22.29) 784.36
brock800 3 25* 25(23.89) 937.43 25(24.16) 651.07
brock800 4 26* 26(25.65) 671.61 26(25.90) 421.60
C2000.9 80 78(76.30) 2117.21 80(77.29) 1515.57
C4000.5 18* 18(17.99) 5482.05 18 1553.24
MANN a45 345* 345(344.06) 302.25 345 27.56
MANN a81 1100* 1098(1098.00) 452.82 1100 22.70

frb30-15-1 30* 30 0.16 30 0.03
frb35-17-1 35* 35 48.40 35 0.69
frb40-19-1 40* 40 36.51 40 0.24
frb45-21-1 45* 45(44.97) 327.35 45 23.00
frb50-23-1 50* 50(48.92) 394.40 50(49.75) 368.69
frb53-24-1 53* 52(51.25) 609.09 53(52.03) 498.36
frb56-25-1 56* 55(54.11) 594.24 56(55.07) 551.64
frb59-26-1 59* 58(57.04) 890.92 59(58.02) 261.14
frb100-40 100* 95(94.22) 2094.28 97(95.48) 862.18

1dc.1024 94 94 0.09 94 0.03
1dc.2048 172 172 0.20 172 0.17
1et.1024 171 171 0.02 171 0.07
1et.2048 316 316(315.68) 116.37 316 6.59
1tc.1024 196 196 0.02 196 0.02
1tc.2048 352 352(351.96) 110.99 352 6.52
1zc.1024 112 112(111.99) 44.57 112(111.99) 29.79
1zc.2048 198 198(197.40) 172.03 198 81.69
1zc.4096 379 377(356.02) 727.18 379(372.66) 99.83
2dc.1024 16 16 0.35 16 0.03
2dc.2048 24 24 188.08 24 6.98

(denoted by SBTSrandom) by replacing its Selection Rule with a random se-
lection rule. With SBTSrandom, when NS1 offers multiple eligible vertices,
one of them is picked at random and used by the (1,1)-swap move.

For this experiment, we run SBTS and SBTSrandom 100 times on each of
the 32 instances (DIMACS, BHOSLIB, CODE) of Section 3.4.2 under the
same condition as before. The results are given in Table 7 which shows for
each algorithm the best result f∗, the average result favg (in parenthesis) and
the average time in second t(s) to reach the best result f∗. From Table 7,
one notices that SBTS performs better than SBTSrandom both in terms of
the best result f∗ and the average result favg. Precisely, SBTS achieves the
best-known result for all the instances except frb100-40 while SBTSrandom
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Table 8: Comparisons of SBTSunique with SBTS
Graph SBTSunique SBTS

Name fbk f∗ t(s) f∗ t(s)
brock400 1 27* 27(26.98) 59.04 27 66.40
brock400 2 29* 29 6.07 29 20.24
brock400 3 31* 31 0.71 31 1.77
brock400 4 33* 33 0.23 33 0.83
brock800 1 23* 23(21.46) 452.06 23(21.52) 963.63
brock800 2 24* 24(22.44) 653.53 24(22.29) 784.36
brock800 3 25* 25(24.10) 739.92 25(24.16) 651.07
brock800 4 26* 26(25.95) 458.71 26(25.90) 421.60
C2000.9 80 79(76.85) 605.79 80(77.29) 1515.57
C4000.5 18* 18 1981.74 18 1553.24
MANN a45 345* 345(344.25) 318.49 345 27.56
MANN a81 1100* 1100(1098.41) 1680.60 1100 22.70

frb30-15-1 30* 30 0.03 30 0.03
frb35-17-1 35* 35 0.47 35 0.69
frb40-19-1 40* 40 0.74 40 0.24
frb45-21-1 45* 45 68.51 45 23.00
frb50-23-1 50* 50(49.55) 356.14 50(49.75) 368.69
frb53-24-1 53* 53(52.03) 438.46 53(52.03) 498.36
frb56-25-1 56* 56(55.09) 453.20 56(55.07) 551.64
frb59-26-1 59* 59(57.86) 777.11 59(58.02) 261.14
frb100-40 100* 97(95.28) 849.67 97(95.48) 862.18

1dc.1024 94 94 0.03 94 0.03
1dc.2048 172 172 0.07 172 0.17
1et.1024 171 171 0.22 171 0.07
1et.2048 316 316 27.23 316 6.59
1tc.1024 196 196 0.01 196 0.02
1tc.2048 352 352 13.73 352 6.52
1zc.1024 112 112 52.26 112(111.99) 29.79
1zc.2048 198 198(197.89) 178.46 198 81.69
1zc.4096 379 377(365.26) 377.07 379(372.66) 99.83
2dc.1024 16 16 0.01 16 0.03
2dc.2048 24 24 2.78 24 6.98

attains the best-known result for only 25 cases out of 32 instances. Besides,
SBTS has a perfect success rate for 20 cases against 13 cases for SBTSrandom.
This experiment demonstrates the usefulness of using the proposed Selection
Rule to explore the NS1 neighborhood.

4.2. Analysis of the tabu tenure technique

Recall that the tabu tenure tt is set differently according to k = 1 or k > 1
(see Section 2.6). In this section, we carry out an experiment to show the
usefulness of this tuning technique. For this purpose, we adopt for the case
k > 1 the same tabu tenure as for the case k = 1 and denote the resulting
variant by SBTSunique. We use SBTSunique to solve 100 times each of the 32
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instances under the same condition as before.
Table 8 shows the comparative results of SBTSunique (column 3-4) and

SBTS (column 5-6). For each algorithm, we show the best result f∗ followed
by the average result favg (in parenthesis) and the average time in second
t(s). We observe that contrary to SBTS which finds all the best-known
results except frb100-40 instance, SBTSunique fails to do so for 3 instances.
SBTS has a perfect success rate of reaching the best-known result for 20 cases
against 17 cases for SBTSunique. This study shows the interest of the adopted
tabu tenue technique and confirms the importance of tuning the tabu tenure
carefully.

5. Conclusion

In this paper, we have presented SBTS, a general and unified swap-based
tabu search algorithm for solving the maximum independent set problem.
The proposed algorithm explores the search space by a dynamic alterna-
tion between intensification and diversification steps. The search process is
driven by the (k, 1)-swap operator combined with specific rules to examine
four different neighborhoods. For the purpose of intensification, SBTS uses
(0,1)-swap to improve the solution and (1,1)-swap to make side-walks with
specific selection rules. To overcome local optima, SBTS adopts an adaptive
perturbation strategy which applies either a (2,1)-swap for a weak perturba-
tion or a (k,1)-swap (k > 2) for a strong perturbation. A tabu mechanism is
also employed to prevent the search from short-term cycles.

We have tested the proposed algorithm on two sets of 120 well-known
instances (DIMACS and BHOSLIB) with multiple topologies and densities.
Computational results show that SBTS competes favorably with 5 state-of-
the-art algorithms in the literature. In particular, SBTS can achieve the
best-known results for all the 120 instances. An additional test of SBTS
on a set of 11 instances from code theory has confirmed its competitiveness
relative to two other reference methods.

Even though the proposed approach achieves competitive results on the
three benchmarks, one observes that some best results can only be reached
occasionally. More studies are needed to improve the stability and search ca-
pacity of the approach. One possibility would be to introduce multiple search
strategies and apply them dynamically and adaptively according to learned
guiding information. Another possibility would be to combine SBTS with
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the memetic search framework where a meaningful solution recombination
mechanism must be sought.
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Appendix: Information updating procedure

After each (k, 1)-swap, SBTS updates the Mapping degree, Expanding
degrees and Diversifying degree of some vertices as well as the associated
neighborhoods NSk (k = 0, 1, 2, > 2). We explain below the updating pro-
cedure.

Suppose that vi ∈ NSk (k = 0, 1, 2, > 2) is swapped with its k adjacent
vertices vj ∈ S. Let via ∈ V \S be any adjacent vertex of vi (i.e., via ∈ V \S,
{via, vi} ∈ E). For each vj, let vja ∈ V \S be any adjacent vertex of vj
(i.e., vja ∈ V \S, {vja, vj} ∈ E). Then the updating procedure realizes the
following operations.
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1. First, for vi and each vj: Since vi moves from NSk to S, its Expanding
Degree is initially set to 0. Since vj is removed from S, its Mapping
Degree and Diversifying Degree is initially set to 0.

2. Then, for each vertex via: its Diversifying Degree decreases by 1 and
its Mapping Degree increases by 1. Meanwhile, the Mapping Degree of
vj increases by 1.
The Expanding Degree of vi increases by 1 if the Mapping Degree of
via increases from 0 to 1 (including vj) while the Expanding Degree of
vi decreases by 1 if the Mapping Degree of via increases from 1 to 2.
When the Mapping Degree of via changes from k to k+ 1 (k = 0, 1, 2),
via moves from NSk to NSk+1 for k = 0, 1 and to NS>2 for k = 2. If
k > 2, via stays in NS>2. Notice that vj belongs now to NS1.

3. Finally, for each vj and its adjacent vertices vja in V \S: The Diver-
sifying Degree of vja increases by 1 while the Mapping Degree of vja
decreases by 1. Meanwhile, the Diversifying Degree of vj increases by
1 for each vja.
For any v′j ∈ S adjacent to vja ({v′j, vja} ∈ E, v′j 6= vj), its Expanding
Degree increases by 1 if the Mapping Degree of vja decreases from 2 to
1.
According to the decrease of the Mapping Degree of vja from k + 1 to
k (k = 0, 1, 2), vja displaces from NSk+1 (NS>2 if k > 2) to NSk. If
k > 2, vja stays in NS>2.

Notice that no vj is swapped out from S if a (0,1)-swap is applied. In
this case, only vi and its adjacent vertices in V \S need to be updated.

This procedure can be efficiently performed in O(k + |{via}| + k|{vja}|).
For Fig. 1, if vertex 9 is added into the solution S ={1, 4, 6, 8} after a (0,1)-
swap, the Mapping Degree of its neighbors {5, 7, 10} becomes KM(5) =
2, KM(7) = 4 and KM(10) = 3. The Expanding Degree of vertex 4 becomes
KE(4) = 1. The new neighborhoods become: NS0 = ∅, NS1 = {2, 3},
NS2 = {5} and NS>2 = {7, 10}.
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